DART-ID Increases Single Cell Proteome Coverage

Albert Chen^{1,2}, Alexander Franks³, Nikolai Slavov^{1,2}

1 Department of Bioengineering, Northeastern University, Boston MA 02115, USA

- **2** Barnett Institute, Northeastern University, Boston MA 02115, USA
- **3** Department of Statistics and Applied Probability, UC Santa Barbara, CA 93106, USA

Summary

- Single cell proteomics by mass spectrometry can help answer may biological questions involving cell diversity and heterogeneity
- Peptide/protein identification is a noisy, stochastic process
- Incorporating peptide retention time (RT) within a principled Bayesian framework increases proteome coverage
- Global RT alignment method is more accurate and boosts coverage
- Manuscript: <u>https://doi.org/10.1101/399121</u>
- Code: https://github.com/SlavovLab/DART-ID

Improve Directed Cell Differentiation

- Use single cell proteomics to profile differentiating cells
- Understand branching points, find biomarkers, and intervene to maximize differentiation efficiency

Peptide Identification by Mass Spectrometry

Simplify sample with liquid chromatography

GOAL: Incorporate retention time into identification

Conventional Pairwise RT Alignments

- Choice of reference experiment not obvious
- Does not account for measurement errors in reference experiment

Global RT Alignment Reduces Error

Incorporating RT Inferences into Identification with Bayes Theorem

Retention time (min)

 $\times P(\text{ ID correct})$ $P(\mathbf{RT})$

- Distributions generated from a mixture model
- PSM 1: confidence downgraded
- PSM 2: confidence upgraded

DART-ID Identifies More Peptides and Reduces Missing Data

PSMs from Spectra

Boosted PSMs Give Consistent Protein Quantification

DART-ID Proteins Separate Cell Types

Conclusion

DART-ID takes advantage of reproducible retention times for peptide sequences within sets of LC runs to greatly increase the coverage of single cell proteomes.

Thanks to members of the Slavov Laboratory. This work was funded by the National Institute of Health to N.S. under Project Number 1DP2GM123497-01

Separation of blood cancer cell proteomes by Principal Component Analysis (PCA)